Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microbiome ; 12(1): 72, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600530

RESUMO

BACKGROUND: Zoonotic viruses cause substantial public health and socioeconomic problems worldwide. Understanding how viruses evolve and spread within and among wildlife species is a critical step when aiming for proactive identification of viral threats to prevent future pandemics. Despite the many proposed factors influencing viral diversity, the genomic diversity and structure of viral communities in East Africa are largely unknown. RESULTS: Using 38.3 Tb of metatranscriptomic data obtained via ultradeep sequencing, we screened vertebrate-associated viromes from 844 bats and 250 rodents from Kenya and Uganda collected from the wild. The 251 vertebrate-associated viral genomes of bats (212) and rodents (39) revealed the vast diversity, host-related variability, and high geographic specificity of viruses in East Africa. Among the surveyed viral families, Coronaviridae and Circoviridae showed low host specificity, high conservation of replication-associated proteins, high divergence among viral entry proteins, and frequent recombination. Despite major dispersal limitations, recurrent mutations, cocirculation, and occasional gene flow contribute to the high local diversity of viral genomes. CONCLUSIONS: The present study not only shows the landscape of bat and rodent viromes in this zoonotic hotspot but also reveals genomic signatures driven by the evolution and dispersal of the viral community, laying solid groundwork for future proactive surveillance of emerging zoonotic pathogens in wildlife. Video Abstract.


Assuntos
Quirópteros , Vírus , Animais , Animais Selvagens , Genoma Viral/genética , Filogenia , Recombinação Genética , Roedores , Uganda/epidemiologia
2.
Virol Sin ; 37(4): 491-502, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35680114

RESUMO

Emergence and re-emergence of infectious diseases of wildlife origin have led pre-emptive pathogen surveillances in animals to be a public health priority. Rodents and shrews are among the most numerically abundant vertebrate taxa and are known as natural hosts of important zoonotic viruses. Many surveillance programs focused more on RNA viruses. In comparison, much less is known about DNA viruses harbored by these small mammals. To fill this knowledge gap, tissue specimens of 232 animals including 226 rodents, five shrews and one hedgehog were collected from 5 counties in Kenya and tested for the presence of DNA viruses belonging to 7 viral families by PCR. Diverse DNA sequences of adenoviruses, adeno-associated viruses, herpesviruses and polyomaviruses were detected. Phylogenetic analyses revealed that most of these viruses showed distinction from previously described viruses and formed new clusters. Furthermore, this is the first report of the discovery and full-length genome characterization of a polyomavirus in Lemniscomys species. This novel polyomavirus, named LsPyV KY187, has less than 60% amino acid sequence identity to the most related Glis glis polyomavirus 1 and Sciurus carolinensis polyomavirus 1 in both large and small T-antigen proteins and thus can be putatively allocated to a novel species within Betapolyomavirus. Our findings help us better understand the genetic diversity of DNA viruses in rodent and shrew populations in Kenya and provide new insights into the evolution of those DNA viruses in their small mammal reservoirs. It demonstrates the necessity of ongoing pathogen discovery studies targeting rodent-borne viruses in East Africa.


Assuntos
Herpesviridae , Polyomavirus , Animais , Genoma Viral , Quênia , Murinae , Filogenia , Polyomavirus/genética , Musaranhos/genética
3.
Front Microbiol ; 10: 2696, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31824465

RESUMO

The majority of emerging and reemerging zoonotic viral pathogens are RNA viruses. Pathogen discovery programs of emerging infectious diseases (EIDs) in wildlife have implicated rodents and shrews as hosts of diverse human pathogens, such as hantaviruses, arenaviruses, paramyxoviruses, etc. Despite these threats, little is known about the diversity of viruses circulating among rodents and shrews in Kenya, meaning the risk of infectious disease outbreak from these small mammals could be oblivious. This study reports the first surveillance toward understanding the diversity of RNA viruses carried by rodents and shrews in areas of high-potential contact with humans in Kenya through molecular detection. A total of 617 samples comprising fecal, urine, and tissues from 138 rodents and 5 shrews were screened for eight different families of viruses using RT-PCR assays. The results highlight the presence of diverse astroviruses, paramyxoviruses, hepeviruses, and arenavirus, circulating in both wild and synanthropic Kenyan rodents and shrews. Most of the viruses detected in this study are novel strains and some belong to the families that contain important human viral pathogens. Notably, a novel arenavirus was detected in Grammomys macmillani, a rodent species newly identified to harbor arenavirus, and it potentially represent a novel arenavirus species. Our findings demonstrate the need for continued pathogen surveillance among these small mammals as well as among the vulnerable and exposed livestock and humans. This would help in development and implementation of effective preventive and control strategies on EIDs in countries with rich wildlife biodiversity like Kenya.

4.
Emerg Microbes Infect ; 8(1): 1528-1534, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31645223

RESUMO

Dromedary camels are important reservoir hosts of various coronaviruses, including Middle East respiratory syndrome coronavirus (MERS-CoV) that cause human infections. CoV genomes regularly undergo recombination during infection as observed in bat SARS-related CoVs. Here we report for the first time that only a small proportion of MERS-CoV receptor-binding domain positive (RBD) of spike protein positive camel sera in Kenya were also seropositive to MERS-CoV nucleocapsid (NP). In contrast, many of them contain antibodies against bat HKU8-related (HKU8r)-CoVs. Among 584 camel samples that were positive against MERS-CoV RBD, we found only 0.48 (8.22%) samples were also positive for NP. Furthermore, we found bat HKU8r-CoV NP antibody in 73 (12.5%) of the MERS-CoV RBD positive and NP negative samples, yet found only 3 (0.43%) of the HKU8r-CoV S1 antibody in the same samples. These findings may indicate co-infection with MERS-CoV and a HKU8r-CoV in camels. It may also raise the possibility of the circulation of a recombinant coronavirus virus with the spike of MERS-CoV and the NP of a HKU8r-CoV in Kenya. We failed to find molecular evidence of an HKU8r-CoV or a putative recombinant virus. Our findings should alert other investigators to look for molecular evidence of HKU8r-CoV or recombinants.


Assuntos
Camelus/virologia , Infecções por Coronavirus/veterinária , Coronavirus/imunologia , Coronavírus da Síndrome Respiratória do Oriente Médio/imunologia , Animais , Anticorpos Antivirais/sangue , Camelus/sangue , Quirópteros/virologia , Coronavirus/genética , Coronavirus/isolamento & purificação , Infecções por Coronavirus/sangue , Infecções por Coronavirus/virologia , Quênia , Coronavírus da Síndrome Respiratória do Oriente Médio/genética , Coronavírus da Síndrome Respiratória do Oriente Médio/isolamento & purificação , Proteínas do Nucleocapsídeo/imunologia , Recombinação Genética , Glicoproteína da Espícula de Coronavírus/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...